# simple
Temperature->last()->format('%.2f degC')
Temperature->last()->scale(1.8)->offset(32)->format('%.2f degF')
TableData -> last() -> get("NHits") -> histogram(nbins=100,min=0,max=100)
# [TODO] with target
Table->format[column='Temperature']('$.2f degC')
# [TODO] using stack
Temperature->dropBelow(0); Pressure->dropBelow(0); ->zip()
Voltages;Voltages[Main];Voltages[Offset];->sum();->addColumn()
# [TODO] using register file
Temperature->dropBelow(0)->T; Pressure->dropBelow(0)->P; (T,P)->zip()
Voltages[Main]->Vm;Voltages[Offset]->Vo; (Vm,Vo)->sum();(Voltages,.)->addColumn()
DATA[ADAPTER1] -> FUNCTOR1(ARG1, ARG2, ...)[ADAPTER2] -> FUNCTOR2(...) ...
For functors that takes multiple inputs, stack operators can be used:
CAHNNEL1 -> FUNCTOR1(); CHANNEL2 -> FUNCTOR2() ->...; -> FUNCTOR()
where ; is an operator to push the data into stack.
As an alternative method, output can be pushed back into the data set as a new channel:
CH_1 -> FUNCTOR1()->CH_A; CH_2 -> FUNCTOR2() -> CH_B; CH_A -> FUNCTOR()
[/]: applies to the entire time-series[/PATH] or [PATH]: select a time-series
field, table column, tree branch
[PATH(PATH2=VALUE)]: filter
@: in-place prefixCHANNEL[NAME] will be converted to
CHANNEL->get(NAME)x[k] for each
k.x[k] is a histogram, it applies to
x[k].counts by default.x[k] is a graph, it applies to x[k].y
by default.x[k] is a table, a column must be specified using an
adapter.x[k] is a tree, a matching pattern must be specified
using an adapter.
scale(): Scalar<Number> -> Scalar<Number>offset(): Scalar<Number> -> Scalar<Number>format(fmt): Scalar<Number> -> Scalar<String>match(val): Scalar<String> -> Scalar<Bool>decode_bits(['aaa','bbb',...]): Scalar<Number> -> Array<String>testbit(): Scalar<Number> -> Scalar<Bool>X[k] for each k as an array,
use a target of [X].
includes(value:String): Array<String> -> Scaler<Bool>mean(): Array<Number> -> Scaler<Number>
(also: median(), first(), last(),
…)head(n): Array -> Array (also:
tail(n))accept_range(min, max) Array<Number> -> Array<Number>rescale(percentile=100): Array<Number> -> Array<Number>standardize(): Array<Number> -> Array<Number>delta(): Array<Number> -> Array<Number>sigma(): Array<Number> -> Array<Number>histogram(nbins, min, max): Array<Number> -> Histogramresample(): TimeSeries -> TimeSeriesalign(): TimeSeries[] -> TimeSeriesintegrate(): TimeSeries -> TimeSeriesdifferentiate(): TimeSeries -> TimeSeriestabulate(columns=['bin_center', 'counts']): Histogram -> Tablestat(): Histogram -> Treebins(): Histogram -> Treetabulate(): Graph -> Tableget(column): Table -> Arrayselect(columns, labels=[]): Table -> Tablerange(column, from, to): Table -> Tablefold(tag_columns): Table -> Treegraph(columns, labels=[]): Table -> Graphget(path): Tree -> Scalarbranch(paths, labels=[]): Tree -> Treerename({old:new, ...}): Tree -> Tree